Speed-invariant encoding of looming object distance requires power law spike rate adaptation.

نویسندگان

  • Stephen E Clarke
  • Richard Naud
  • André Longtin
  • Leonard Maler
چکیده

Neural representations of a moving object's distance and approach speed are essential for determining appropriate orienting responses, such as those observed in the localization behaviors of the weakly electric fish, Apteronotus leptorhynchus. We demonstrate that a power law form of spike rate adaptation transforms an electroreceptor afferent's response to "looming" object motion, effectively parsing information about distance and approach speed into distinct measures of the firing rate. Neurons with dynamics characterized by fixed time scales are shown to confound estimates of object distance and speed. Conversely, power law adaptation modifies an electroreceptor afferent's response according to the time scales present in the stimulus, generating a rate code for looming object distance that is invariant to speed and acceleration. Consequently, estimates of both object distance and approach speed can be uniquely determined from an electroreceptor afferent's firing rate, a multiplexed neural code operating over the extended time scales associated with behaviorally relevant stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responses of the teleostean nucleus isthmi to looming objects and other moving stimuli.

Visually evoked extracellular neural activity was recorded from the nucleus isthmi (NI) of goldfish and bluegill sunfish. When moving anywhere within the right eye's visual field, three-dimensional checkered balls or patterns on a computer screen evoked bursts of spikes in the left NI. Object motion parallel to the longitudinal body axis gave responses that habituated markedly upon repetition, ...

متن کامل

Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron.

We investigated in vivo the characteristics of spike-frequency adaptation and the intrinsic membrane properties of an identified, looming-sensitive interneuron of the locust optic lobe, the lobula giant movement detector (LGMD). The LGMD had an input resistance of 4-5 MOmega, a membrane time constant of about 8 ms, and exhibited inward rectification and rebound spiking after hyperpolarizing cur...

متن کامل

Commentary: Burst Firing in a Motion-Sensitive Neural Pathway Correlates with Expansion Properties of Looming Objects That Evoke Avoidance Behaviors

What is the neural code? This essential question has been the driving force behind much research in sensory and motor neuroscience, spurring investigations of diverse animals, brain areas, and behaviors. Given that neurons generally transmit information with trains of voltage spikes, what information are these spikes representing, and how can they be interpreted? Do downstream neurons respond t...

متن کامل

Neural noise can explain expansive, power-law nonlinearities in neural response functions.

Many phenomenological models of the responses of simple cells in primary visual cortex have concluded that a cell's firing rate should be given by its input raised to a power greater than one. This is known as an expansive power-law nonlinearity. However, intracellular recordings have shown that a different nonlinearity, a linear-threshold function, appears to give a good prediction of firing r...

متن کامل

Looming sounds are perceived as faster than receding sounds

Each year thousands of people are killed by looming motor vehicles. Throughout our evolutionary history looming objects have posed a threat to survival and perceptual systems have evolved unique solutions to confront these environmental challenges. Vision provides an accurate representation of time-to-contact with a looming object and usually allows us to interact successfully with the object i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 33  شماره 

صفحات  -

تاریخ انتشار 2013